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SUMMARY

A framework for adaptively inserting and removing particles with smoothed particle hydrodynamics
(SPH) has been developed. A number of SPH variants were examined for use in an adaptive method.
A minimum of linear consistency in the method has proven critical. Algorithms for particle placement
and reassignment are discussed and results for a shock tube problem are shown. Copyright ? 2005
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Smoothed particle hydrodynamics (SPH) is a meshless technique for simulations in computa-
tional �uid dynamics. It was originally developed for astrophysics by Lucy [1] and Gingold
and Monaghan [2], but has been adapted by a range of problems in �uid mechanics [3–5].
As a Lagrangian technique, it o�ers advantages in problems with multiple phases, complex
geometries and moving boundaries.
The resolution for any particular simulation is dependent on the distribution of computational

particles, and can be controlled to some degree by the particles’ initial distribution. However,
as the solution evolves, the particle distribution is dictated by the �ow and local control of
resolution is lost. In some applications, the distribution dictated by the �ow leads to a high
number of particles in locations where higher resolution is desired. To take advantage of this,
smoothing lengths are made to vary from particle to particle. Shapiro et al. [6] extended this
idea and allowed smoothing length to vary directionally.
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Another approach to improving control of local resolution is to adjust the particle distri-
bution itself, as in conventional adaptive mesh re�nement. Kitsionas and Whitworth [7] have
implemented a particle-splitting method for astrophysics. Liu et al. [8] presented an approach
for inserting particles in an Eulerian form of the reproducing kernel particle method for CFD
applications. More recently, Liu [9] demonstrated a Lagrangian implementation of a meshless
method for particle insertion, with the aid of a Delaunay triangulation.
This work presents a more general method for resolution adjustment using particle insertion

and removal. Any number of particles can be inserted during the adjustment step with few
restrictions on their placement. Also, particles can be removed where lower resolution can be
accepted. The approach is exclusively Lagrangian and uses simple mechanisms for particle
placement and re-assignment of smoothing length and particle volume.

2. THE SPH METHOD

SPH is based on a method of estimating function values and gradients when the function
values are known for a set of disordered points. Following Monaghan [10], the value of an
arbitrary function F at a particle i is approximated as

〈Fi〉=
∑
j
VjFjWij (1)

where the kernel W is a function of the smoothing length h and the distance between particle
i and its neighbour j. The �uid volume assigned to each particle, V, is usually expressed in
terms of density and particle mass as

Vj=
mj
�j

(2)

The gradient of F can be found by simply taking the gradient of the kernel

〈∇Fi〉=
∑
j
VjFj∇Wij (3)

The governing equations of �uid dynamics are modelled using Equation (3) to compute re-
quired gradients. More details on the basic SPH method can be found in References [4, 9, 10].
Typical SPH kernel functions satisfy the normalization condition that the integral of the

kernel over its region of in�uence should equal unity [10]. However, this condition is not
generally satis�ed in the discrete summation form as applied in SPH:∑

VjWij �= 1 (4)

As a result, SPH cannot correctly estimate the values or gradients of a constant function.
Belytschko [3] introduced the de�nition of consistency order from the �nite element method
as the order of polynomial that can be represented exactly. Basic SPH does not achieve 0 order
consistency. The lack of consistency leads to signi�cant error when the particle spacing is
non-uniform. To develop an e�ective method for inserting and removing particles as a solution
progresses, the formulation must be accurate when spacing inevitably becomes non-uniform.
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3. MODIFIED SPH

Five modi�ed SPH formulations with higher orders of consistency are now described. Each
method is evaluated for its ability to reproduce polynomial test functions when particle spacing
is non-uniform. This directly addresses the main di�culty of adaptive particle distribution.
In many cases, the gradient of a function Fi that is used in a conservation equation can be

written in the form

〈∇Fi〉=
∑
j
Vj(Fj − Fi)∇Wij (5)

Then if F is constant, Fi=Fj, and the gradient will always be correctly evaluated as zero—
regardless of particle spacing. In most SPH implementations, the energy and continuity equa-
tions already appear in this form. Following References [4, 11], the momentum equation can
also be expressed in this way, though Bonet and Lok [11] caution against such a use.
Alternatively, the kernel function itself can be modi�ed to achieve zero-order consistency.

For example, the Shepard function [11, 12] shown here directly normalizes the kernel function
to yield a new corrected kernel W 0

ij , which ensures that the normalization condition is satis�ed.

〈Fi〉=
∑

j VjFjWij∑
j VjWij

=
∑
j
VjFjW 0

ij (6)

Kernel corrections can be extended to higher orders of consistency, as shown by Liu
et al. [13, 14]. Here, the � and � terms make corrections that guarantee exactly correct
evaluation of a linear function F

〈Fi〉=
∑
j
VjFjWij[�+ � · (ri − rj)] (7)

where ri represents the location of particle i.
Another way to improve consistency for the Shepard function is to follow the mixed kernel

and gradient correction proposed by Bonet and Lok [11]. A �rst-order correction Li is applied
to the gradient of the zero-order kernel from Equation (6):

〈∇Fi〉=
∑
j
VjFjLi∇W 0

ij ; Li=

[∑
j
Vj∇W 0

ij ⊗ xj
]−1

(8)

A �nal method uses a combination of the features from two previous methods. To achieve
zero-order consistency, the conservation equations are written in the di�erence form
(Equation (5)). The gradient correction Li from (8) is then applied to obtain 1st order con-
sistency.
The standard SPH formulation and the �ve modi�ed forms were evaluated for their ability

to accurately reproduce test functions and their gradients. The functions were represented in
one dimension by a set of 51 particles. These particles were regularly spaced at an interval of
�x=1:0 with the exception of a single point where the distance to its left and right nearest
neighbours was �x=2. To illustrate the errors associated with irregular spacing, a plot of the
gradient calculation results for a quadratic test function is shown in Figure 1. Here, standard
SPH is compared to the Shepard’s function from Equation (6) (0 order consistent) and the
Shepard’s function with a gradient correction from Equation (8) (1st order consistent).
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Figure 1. Gradient of a quadratic function near non-uniform spacing.

Table I. Total error from gradient calculations.

Method Consistency ∇F =0 ∇F =3:14 ∇F =6:28x
Standard SPH None 0.4 3.4 33.9
Di�erence form 0-order 0 0.5 9.6
Shepard’s function 0-order 0 0.7 13.4
Linearly consistent kernel 1-order 0 0 1.2
Shepard’s function + gradient correction 1-order 0 0 0.8
Di�erence form + gradient correction 1-order 0 0 0.8

The results of the gradient evaluation are shown in Table I, where error is calculated as
the square root of the total squared di�erence between the SPH approximation and the exact
gradient. As the order of consistency increases, so does the accuracy of the result near the
irregular spacing. This is true even if the order of the polynomial exceeds the consistency
order of the method. Methods of a similar order of consistency all yielded similar results,
suggesting that consistency is a critical property in determining how well a method performs
in the face of non-uniform spacing. In addition, consistency corrections can o�er advantages
such as improved boundary handling and, in the case of the gradient correction, a guaranteed
conservation of angular momentum [11].

4. ADAPTIVE PARTICLE INSERTION AND REMOVAL

Once an appropriate SPH formulation has been established, the actual procedure used to add
and remove particles must be de�ned. This is broken down into �ve steps:

(i) The criteria for adding and removing particles must be de�ned.
(ii) Particles must be added and removed according to the criteria.
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(iii) Flow variables must be interpolated for newly added particles.
(iv) The smoothing lengths must be re-assigned to re�ect the new distribution.
(v) The mass of each particle must be redistributed to re�ect the new distribution.

There are many possible criteria for particle addition and removal (step (i)). In conventional
mesh-based CFD, techniques for choosing locations of mesh re�nement have become quite
sophisticated [15]. The objective of the present work is to develop a robust and �exible
framework for SPH in which particles can be inserted and removed according to any criterion.
To generate results for demonstration in Section 5, a criterion based on velocity gradient has
been chosen. Where local velocity gradients are high, particles are added; where local gradients
in the solution are low, particles are removed, subject to upper and lower limits on particle
spacing (and e�ectively, on smoothing length).
With the criteria set, addition and removal of particles can take place (step (ii)). For

addition, a new particle is placed near an existing particle with a high velocity gradient. Its
position is then iteratively adjusted to improve the local inter-particle spacing, giving a more
even distribution. This step reduces error associated with uneven spacing, as discussed in
Section 3. Particles identi�ed for removal in step (i) are simply deleted from the calculations.
The re-allocation of their �uid volume and particle mass is considered in steps (iv) and (v).
Now that new particle locations have been determined, a �rst-order consistent SPH kernel

is used to interpolate �ow variables at the new locations (step (iii)). Higher order consistent
kernels could be used to improve accuracy, but this is balanced by computational cost.
In step (iv), smoothing lengths are reassigned to re�ect the new particle distribution. A con-

stant reference smoothing length, href , is introduced here to assess the local spacing. The sum
over neighbouring kernel values is calculated for each particle using this reference smoothing
length, giving an approximate value for the volume represented by each particle. Speci�cally,

V refi =
1∑

j W (|rj − ri|; href ) (9)

This e�ectively relates the volume to the smoothed value of number density, �=m. The new
smoothing length is then proportional to (V refi )

1=d, where d is the number of dimensions.
Finally in step (v), mass is redistributed using each particle’s �uid volume and the original

density distribution. This is done by �rst replacing the reference smoothing length in Equation
(9) with the local smoothing length. This de�nes the �uid volume of each particle based on
inter-particle spacing, and the mass redistribution is performed with Equation (2) to restore
the original density distribution. Consistency-corrected methods are critical here, allowing the
original density pro�le of the �uid to be more accurately reproduced.

5. SHOCK TUBE RESULTS

Adaptive particle distribution was implemented with the various underlying SPH formulations
from Section 3, and applied to compressible �ow with the Riemann shock tube problem. The
shock tube was implemented with an initial 4:1 pressure ratio and a Courant number of 0.3
(based on smoothing length). A snapshot of the resulting velocity pro�les near the shock
front is shown in Figure 2. Methods of similar orders of consistency yielded similar results,
so the methods from Equations (6) and (8) are used here as representatives for 0 and 1 order
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Figure 2. Instantaneous velocity pro�les at shock front.

consistency corrections, respectively. The corrected methods applied without adaptive particle
distribution showed little di�erence at the shock front but greater error at the expansion wave
when compared to the standard SPH method. Errors in density were compared by calculating
the absolute di�erence from the analytic solution, weighed by each particle’s volume and
normalized by the total mass. The corrected methods showed density errors of 0.74% and
0.71% for zero- and �rst-order consistency corrections respectively, compared to 0.51% for
standard SPH.
When adaptive distribution is applied, the zero-order consistent method has di�culty ac-

commodating particle addition and removal. Although the front of the shock is sharper, there
are signi�cant post-shock errors leading to a total density error of 0.94%. The �rst-order
consistent method with adaptivity, however, improves the shock front resolution while main-
taining the correct post-shock solution. The solution at the expansion wave is also improved,
and the total density error is reduced to 0.32%. The total number of particles was kept at
around 450—the same total number used in the non-adaptive cases.
As a �rst step towards multi-dimensional applications of the technique, simulations have

been carried out for this nominally 1D shock tube �ow with a �nite width in the second
dimension. In SPH, this problem does not reduce trivially to the 1D problem as it would in a
mesh-based technique with a suitably �ow-aligned grid. Improvement in shock capturing was
achieved with adaptive particle distribution, as in the 1D case. The global density error, as
de�ned above, was reduced from 1.8% for standard SPH to 0.67% for the adaptive case. The
total number of particles was again kept similar for both cases at around 4400.

6. CONCLUSIONS

The ability to adaptively insert and remove particles to control resolution is highly desirable
when applying SPH to practical problems in �uid mechanics. A framework method to achieve
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this has been presented, making special use of linearly consistent SPH. The method highlights
key concepts such as the use of a reference smoothing length to rede�ne individual smoothing
lengths, and the use of a particle volume de�ned using kernel summations. As a demonstration,
adaptive particle distribution with SPH has been shown to improve accuracy with a similar
number of particles in a shock tube simulation.
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